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Nonsingular Green’s Functions for Multi-Layer Homogeneous 
Microstrip Lines 
 
 
M. Khalaj-Amirhosseini* 
 
 
 

Abstract: In this article, three types of green's functions are presented for a narrow strip 
line (not a thin wire) inside or on a homogeneous dielectric, supposing quasi-TEM 
dominant mode. These functions have no singularity in contrast to so far presented ones, so 
that they can be used easily to determine the capacitance matrix of multi-layer and single-
layer homogeneous coupled microstrip lines. To obtain the green’s functions, the Laplace’s 
equation is solved analytically in Fourier integral or Fourier series expressions, taking into 
account the boundary conditions including the narrow strip. The validity and accuracy of 
three presented green’s functions are verified by some examples. 
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1 Introduction1 
The multiconductor coupled microstrip transmission 
lines are used in RF, microwave and high-speed digital 
circuits extensively. To analyze these transmission lines, 
one has to find the capacitance matrix of the structure 
[1]. The capacitance matrix of this structure is 
determined using conformal mapping transformations 
[2, 3], variational methods [4, 5], spectral domain 
techniques [6, 7], finite difference method [8], solving 
Laplace’s equation [9] and the combination of green’s 
function and method of moments [1, 10-13]. 

The green's functions presented in the literatures are 
for an infinitesimally thin wire and have singularity on 
the wire. In this article, some new green's functions are 
presented for a narrow strip line (not a thin wire) inside 
or on a homogeneous dielectric. These green's functions 
have no singularity and can be used to determine the 
capacitance matrix of multi-layer and single-layer 
homogeneous coupled microstrip lines. To obtain these 
green’s functions, the Laplace’s equation is solved 
analytically in Fourier integral or Fourier series 
expressions, considering the boundary conditions 
including the narrow strip. 

In section 2, open multi-layer microstrip structure is 
introduced and then a closed form green’s function is 
obtained for open single-layer structure, in section 3. In 
section 4, shielded multi-layer or single-layer microstrip 
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structures are introduced and then two green’s functions 
are obtained for both of them. Finally, the validity of 
three presented green’s functions is verified by some 
examples, in section 5. 
 
2 Open Multi-Layer Microstrip Structure 

Fig. 1 shows the cross-section of a typical open and 
inhomogeneous N-layer microstrip line. The relative 
electric permittivity and top surface of layers are )(n

rε  
and yn, respectively, where n = 1, 2, …, N. There is a 
narrow strip of width Δw whose center is (x’,yn). It is 
assumed that the principal propagation mode is quasi-
TEM. Now, solving the two dimensional Laplace’s 
equation gives the voltage distribution in the n-th region 
as follows. 
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in which ),(~ ykV xn  is the Fourier transform of the 
voltage ),( yxVn , given by: 
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Also, the surface charge on the top side of region n 
is obtained like this. 



Khalaj-Amirhosseini: Nonsingular Green’s Functions for Multi-Layer Homogeneous Microstrip Lines                      137 

∫
∞

∞−

+
+

+
+

=
++

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−−

−

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

=

xx

nx
n

rxn

nx
n

rxn

nx
n

rxn

nx
n

rxn

x

yy
nn

ryy
nn

r

n
s

dkxjk

ykkB

ykkA

ykkB

ykkA

k

y
yxV

y
yxV

x

nn

)exp(

)exp()(

)exp()(

)exp()(

)exp()(

2

),(),(

)(

)(

)(

)1(
1

)1(
1

1)1()(
0

)(

0

ε

ε

ε

ε

π
ε

εεε

ρ

               (3) 

It is known that the voltage must be continuous on 
the interfaces between two adjacent regions. Besides, 
the surface charge on the interfaces between two 
adjacent regions is zero excepting on the strip which is 
assumed to be uniform. Considering these boundary 
conditions, the following 2N+2 equation system for 
2N+2 unknown coefficients are obtained. 
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where ρl is the per-unit-length charge of the strip. After 
finding the unknown coefficients An and Bn through Eq. 
(4), the voltage distributions are obtained using 
numerical calculating of the integrals in Eq. (1). Finally, 
the green’ function will be in fact 

ln yxVyxyxG ρ/),(),;,( =′ . 
If the electric permittivity of all layers in Fig. 1 are 

being the same, i.e. a homogeneous dielectric, the Fig. 1 
will be reduced to Fig. 2. In fact, there will be only three 
regions to find potential coefficients. In view of 
boundary conditions, the Fourier transform of the 
voltages will be resulted as follows. 
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where three desired unknown coefficients are given by 
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Fig. 1 The cross-section of a typical open inhomogeneous 
multi-layer microstrip lines. 
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Fig. 2 The cross-section of a typical open homogeneous multi-
layer microstrip lines. 
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Also, the function sgn(.) is the signum function and 
the functions Ci(.) and Si(.) are the sine and cosine 
integrals, respectively, as follows: 
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where γ is Euler's constant equal to 0.5772… . One can 
sees that the green’s function (13) has no singularity at 
the center of narrow strip. 

If the width Δw approaches zero, the voltage 
function will be reduced to the following relation, by 
equating the sinc function in Eq. (11) to 1. 
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4 Shielded Microstrip Structures 

In numerous applications, the microstrip lines are 
fully shielded by two lateral walls at x = 0 and x = a, as 
shown in Figs. 5-7. The green’s function of shielded 
structures can be readily obtained by considering 
images of the strip with respect to the left and right 
walls as seen in Table 1. 

For shielded homogeneous multi-layer microstrips, 
i.e. Fig. 6, also there can be found the voltage 
distribution by Fourier series expansion and well-known 
boundary conditions (four walls and voltage and surface 
charge on y = yn). In view of boundary conditions and 
performing some mathematical efforts like as Eqs. (4) 
and (5), the voltage distribution will result in as follows. 
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where three desired unknown coefficients are given by: 
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The voltage distribution of shielded homogeneous 

single-layer microstrips, i.e. Fig. 7, can be found from 
Eqs. (18) and (19) assuming y = yn = h as the following 
relation. 
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One can sees that the green’s functions (18) and (22) 
have no singularity at the center of narrow strip. Of 
course, the summations in Eqs. (18) and (22) can be 
truncated to M terms so as the last term is being very 
smaller than the first term. This gives us the following 
condition for Eq. (22). 
 

 
 
Table 1The location and sign of images of the shielded strip with respect to the left and right walls. 

… −4a− x′  4a+ x′  −2a− x′  −2a+ x′  − x′ x′ 2a− x′  2a+ x′  4a− x′  4a+ x′  … 
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Fig. 5 The cross-section of a typical shielded inhomogeneous 
multi-layer microstrip lines. 
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Fig. 6 The cross-section of a typical shielded homogeneous 
multi-layer microstrip lines. 
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Fig. 7 The cross-section of a typical shielded homogeneous 
single-layer microstrip lines. 
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5 Examples and Results 

In this section we investigate the validity of three 
presented green’s functions (13), (18) and (22) by some 
examples. To get self and mutual capacitances, the lines 
are subdivided to K equi-potential parts of one volt 
potential and then the Method of Moment is used. 

As a first example, consider an open single-layer 
microstrip transmission line of width and thickness w 
and h, respectively. Table 2 compares the characteristic 
impedance Z0 of the line obtained through Eq. (13) 
considering b/h=51 and K=12 with that of obtained in 
the references. The characteristic impedance can be 
obtained the following relation. 

CCc
Z

1
0

1
=            (24) 

where c is the velocity of the light and C and C1 are the 
capacitance of the microstrip line with and without 
substrate, respectively. 

For the second example, consider two identical 
coupled lines of width w and gap s on an open single-
layer dielectric of εr= 1 and b=2h. Table 3 compares the 
even and odd mode capacitances of the lines obtained 
through Eq. (13) considering K=20 with that of obtained 
in the reference [9]. 

For the third example, consider two identical 
coupled lines of width w lying at points (x1=6.5, y1=1) 
and (x2=11.5, y2=0.5) in a shielded homogeneous 
structure of εr= 1, a = 18 and b=5. Table 4 compares the 
even and odd mode capacitances of this two-layer 
structure obtained through Eq. (18) considering K=10 
and M=300 with that of obtained in the reference [13]. 

For the forth example, consider eight identical 
coupled lines of width w = 1/16h and gap s = 1/16h on 
the middle of a shielded single-layer structure of εr= 
12.9, a = 175/16h and b = 7.25h. Table 5 compares the 
20 different coefficients of the capacitance matrix of the 
lines obtained through Eq. (22) considering K=20 and 
M=8780 with that of obtained in the reference [9]. 

One sees from tables 2-5 that there is an excellent 
agreement between the results obtained from explicit 
form green’s functions expressed by Eqs. (13, 18) and 
(22) with those reported in reliable references. 
Therefore one can conclude the validity of these three 
presented relations. 
 
Table 2 An open single-layer microstrip transmission line 
(Example 1). 

w/h εr C [pF/m]
Eq. (13) 

C1 [pF/m] 
Eq. (13) 

Z0 [Ω] 
Eq. (13) 

Z0 [Ω] 
(Refs.) 

0.4 6 71.18 18.40 91.68 91.17 [13]
0.4 9.5 110.30 18.40 73.99 73.70 [13]
1 6 108.01 25.90 63.03 62.71 [13]

1.025 8.875 159.54 26.31 51.45 50.00 [8] 
3 10 356.22 45.97 26.05 25.47 [12]
10 6 579.87 108.40 13.30 13.34 [13]
10 9.5 912.91 108.40 10.60 10.57 [13]

 
Table 3 An open single-layer microstrip coupled transmission 
lines (Example 2). 

 
w/h

 
s/h

Ceven 
[pF/m] 
Eq. (13)

Ceven 
[pF/m] 

[9] 

Codd 
[pF/m] 
Eq. (13) 

Codd 
[pF/m] 

[9] 
0.1 0.1 9.48 9.59 26.38 27.74 
0.1 1 12.75 12.95 15.08 15.56 
1 0.1 26.58 26.33 51.68 54.58 
1 1 31.01 31.09 35.86 35.73 

 
Table 4 A shielded two-layer microstrip coupled transmission 
lines (Example 3). 

 Eq. (18) [13] 
C11 [pF/m] 49.33 49.51 
C22 [pF/m] 77.08 77.12 
C21 [pF/m] -1.826 -1.835 
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